Preserve and protect: maintaining axons within functional circuits
نویسندگان
چکیده
منابع مشابه
Histone deacetylase inhibitors preserve function in aging axons.
Aging increases the vulnerability of aging white matter to ischemic injury. Histone deacetylase (HDAC) inhibitors preserve young adult white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. In isolated optic nerve from 12-month-old mice, deprived of oxygen and glucose, we show that pan- and Class I-specific HDAC inhibitors promote functional recovery ...
متن کاملFunctional disturbances within frontostriatal circuits across multiple childhood psychopathologies.
OBJECTIVE Neuroimaging studies of healthy individuals inform us about the normative maturation of the frontostriatal circuits that subserve self-regulatory control processes. Findings from these studies can be used as a reference frame against which to compare the aberrant development of these processes in individuals across a wide range of childhood psychopathologies. METHOD The authors revi...
متن کاملMitochondrial changes within axons in multiple sclerosis.
Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function o...
متن کاملMaintaining Arc-Consistency within Dynamic Backtracking
Most of complete search algorithms over Constraint Satisfaction Problems (csp) are based on Standard Backtracking. Two main enhancements of this basic scheme have been studied: first, to integrate constraint propagation as mac which maintains arc consistency during search; second, intelligent backtrackers which avoid repeatedly falling in the same dead-ends by recording nogoods as Conflict-dire...
متن کاملTools for Resolving Functional Activity and Connectivity within Intact Neural Circuits
Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in Neurosciences
سال: 2014
ISSN: 0166-2236
DOI: 10.1016/j.tins.2014.07.007